Abstract

In the reflexively standing acute decerebrate cat, we have previously shown that pulse train microstimulation of the hook bundle of Russel in the midline of the cerebellar white matter, through which crossed fastigiofugal fibers decussate, augments the postural tone of neck, trunk, fore-, and hindlimb extensor muscles. In the present study we examined the possible role of such stimulation in evoking locomotion as the animal is supported by a rubber hammock with its feet contacting the moving surface of a treadmill. We were able to provoke well-coordinated, bilaterally symmetrical, fore- and hindlimb movements, whose cycle time and pattern were controlled by appropriate changes in stimulus intensity and treadmill speed. We carefully and systematically mapped this cerebellar locomotor region (CLR) through repeated dorsoventral penetrations with a glass-coated tungsten microelectrode in a single animal and between animals. We found that the optimal locus for evoking locomotion was centered on the midline, at Horsley-Clarke coordinates H0 and P7.0, and extended over a rostrocaudal and dorsolateral range of approximately 0.5 mm. The lowest effective stimulus intensity at the optimal site was in the range of 5-8 microA. Along penetration tracks to left or right of the midline, effective stimulus intensity increased and evoked locomotor patterns were no longer symmetrical, but rather shifted toward the contralateral limbs. In the same animals, controlled locomotion was evoked by stimulating the mesencephalic locomotor region (MLR). With concomitant stimulation of the optimal sites in the CLR and the MLR, each at subthreshold strength, locomotor movements identical to those seen with suprathreshold stimulation of each site alone were evoked. With concomitant stimulation at suprathreshold strength for each site, locomotion became vigorous, with a shortened cycle time. After making ablative lesions at either the CLR or MLR (unilateral or bilateral), controlled locomotion was still evoked at the prior stimulus strength by stimulating the remaining site. Together, these results demonstrate that selective stimulation of the hook bundle of Russel in the midsagittal plane of the cerebellar white matter evokes "controlled" locomotion identical to that evoked by stimulating the MLR. We have shown that the fastigial nucleus is one of the supraspinal locomotion inducing sites and that it can independently and simultaneously trigger brain stem and spinal locomotor subprograms formerly believed to be the domain of various brain stem regions including the MLR and the subthalamic locomotor region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.