Abstract

Lung tissue stiffness is altered with aging. Quantitatively evaluating lung function is difficult using a light microscope (LM) alone. Scanning acoustic microscope (SAM) calculates the speed-of-sound (SOS) using sections to obtain histological images by plotting SOS values on the screen. As SOS is positively correlated with stiffness, SAM has a superior characteristic of simultaneously evaluating tissue stiffness and structure. SOS images of healthy bronchioles, arterioles, and alveoli were compared among young, middle-aged, and old lung sections. Formalin-fixed, paraffin-embedded (FFPE) sections consistently exhibited relatively higher SOS values than fresh-frozen sections, indicating that FFPE became stiffer but retained the relative stiffness reflecting fresh samples. All lung components exhibited gradually declining SOS values with aging and were associated with structural alterations such as loss of smooth muscles, collagen, and elastic fibers. Moreover, reaction to collagenase digestion resulted in decreased SOS values. SOS values of all components were significantly reduced in young and middle-aged groups, whereas no significant reduction was observed in the old group. Protease damage in the absence of regeneration or loss of elastic components was present in old lungs, which exbited dilated bronchioles and alveoli. Aging lungs gradually lose stiffness with decreasing structural components without exposure to specific insults such as inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.