Abstract

A novel control technique is presented in this paper, which is based on a first-order adaptive sliding mode that ensures convergence in a finite time without any prior information on the upper limits of the parametric uncertainties and/or external disturbances. Based on an exponent reaching law, this controller uses two dynamically adaptive control gains. Once the sliding mode is reached, the dynamic gains decrease in order to loosen the system’s constraints, which guarantees minimal control effort. The proof of convergence was demonstrated according to Lyapunov’s criterion. The proposed algorithm was applied to a drill string system to evaluate its performance because such systems present variable operating conditions caused by, for example, the type of rock. The effectiveness of the proposed controller was evaluated by conducting a comparative study that involved comparing it against a commonly used sliding mode controller, as well as other recent adaptive sliding mode control techniques. The different mathematical performance measures included energy consumption. The proposed algorithm had the best performance measures with the lowest energy consumption and it was able to significantly improve the functioning of the drill string system. The results indicated that the proposed controller had 20% less chattering than the classic SM controller. Finally, the proposed controller was the most robust to uncertainties in system parameters and external disturbances, thus demonstrating the auto-adjustable features of the controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.