Abstract

Inspired by the difference in the friction radii of the pads from the high-speed train brake system, stick–slip experiments for a disc–block friction system with different friction radii were carried out via a test device. Based on the test results, the stick–slip vibration characteristics of the disc–block friction system with variation in the friction radius were analyzed, and the corresponding Stribeck model parameters in exponential and fractional forms were identified. The experimental results show that with an increase in the friction radius the vibration amplitude first increased and then decreased and the frequency of stick–slip vibration increased. The identified Stribeck model parameters show that the decay factors increased, the static friction coefficient decreased, and the dynamic friction coefficient decreased first and then increased as the friction radius increased. Moreover, the identified Stribeck model in an exponential form can more accurately reflect the stick–slip characteristics of a disc–block friction system than the model in a fractional form. It can be further applied in the investigation of the dynamic behaviors of high-speed train brake systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.