Abstract

Stereoscopic segregation in depth was studied using two superimposed frontoparallel surfaces displayed in dynamic random dot stereograms. The two patterns were positioned symmetrically in front of and behind a binocular fixation point. They were either stationary, or they could move relative to each other. Sensitivity for segregation was established by adding gaussian distributed disparity noise to the disparities specifying the two planes, and finding the noise amplitude that gave threshold segregation performance. Observers easily segregate the two surfaces for disparity differences between approximately 6 and 30-40 arcmin. Motion contrast, which by itself provides no cue to perform the task, greatly improves sensitivity for segregation. Noise tolerance rises by a factor of two or more when the patterns move at different speeds, or in different (frontoparallel) directions. The effect increases with directional difference, but the optimal directional difference deviated from 180 deg. The optimal speed varies with disparity difference. Thus, motion and disparity must interact in order to resolve the two transparent planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.