Abstract

Exploiting bis-addition products of fullerenes is a rational way to improve the efficiency of bulk heterojunction-type organic photovoltaic cells (OPV); however, this design inherently produces regio- and stereoisomers that may impair the ultimate performance and fabrication reproducibility. Here, we report unprecedented exo and endo stereoisomers of the spiro-acetalized [60]fullerene monoadduct with methyl- or phenyl-substituted 1,3-dioxane (SAF6). Although there is no chiral carbon in either the reagent or the fullerene, equatorial (eq) rather than axial (ax) isomers are selectively produced at an exo-eq:endo-eq ratio of approximately 1:1 and can be easily separated using silica gel column chromatography. Nuclear Overhauser effect measurements identified the conformations of the straight exo isomer and bent endo isomer. We discuss the origin of stereoselectivity, the anomeric effect, intermolecular ordering in the film state, and the performance of poly(3-hexylthiophene):substituted SAF6 OPV devices. Despite their identical optical and electrochemical properties, their solubilities and space-charge limited current mobilities are largely influenced by the stereoisomers, which leads to variation in the OPV efficiency. This study emphasizes the importance of fullerene stereochemistry for understanding the relationship between stereochemical structures and device output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.