Abstract

Three-ring polyamides containing pyrrole (Py) and imidazole (Im) amino acids covalently coupled by γ-aminobutyric acid (γ) form six-ring hairpins that recognize five-base-pair sequences in the minor groove of DNA. Selective chiral substitution of the “γ-turn” enhances the properties of polyamide hairpins with regard to DNA affinity and sequence specificity. Polyamides of core sequence composition ImPyPy-γ-PyPyPy which differ by selective stereochemical substitution of the prochiral α-position in the γ-turn were prepared. The DNA binding properties of two enantiomeric polyamides were analyzed by footprinting and affinity cleavage on a DNA fragment containing two match sites (5‘-TGTTA-3‘ and 5‘-ACATT-3‘) and one 5‘-TGTCA-3‘ mismatch site. Quantitative footprint titrations demonstrate that replacement of γ-aminobutyric acid by (R)-2,4-diaminobutyric acid enhances DNA binding affinity for the 5‘-TGTTA-3‘ match site 13-fold (Ka = 3.8 × 109 M-1). The enhanced affinity is achieved without a compromise in sequence selectivity, which in fact increases and is found to be 100-fold higher relative to binding at a single base pair mismatch sequence, 5‘-TGTCA-3‘. An (S)-2,4-diaminobutyric acid linked hairpin binds with 170-fold reduced affinity relative to the R-enantiomer and only 5-fold sequence specificity versus a 5‘-ACATT-3‘ reversed orientation site. These effects are modulated by acetylation of the chiral amine substituents. This study identifies structural elements which should facilitate the design of new hairpin polyamides with improved DNA binding affinity, sequence specificity, and orientational selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.