Abstract

Hollow microcapsules comprised of poly(styrenesulfonate) (PSS) and a fourth generation poly(amidoamine) dendrimer (4G PAMAM) were prepared by depositing PSS/4G PAMAM multilayers on melamine formaldehyde (MF) colloid particles by the layer-by-layer self-assembly technique and subsequently dissolving the templated cores. The PSS/4G PAMAM layers were unstable toward the core removal procedure (pH approximately 1), resulting in a low yield of intact hollow capsules (<10% for 3.5 microm diameter MF templates). Stretching of the multilayer film due to core swelling during MF core dissolution leads to partial or complete destruction of capsules, giving discrete PSS-4G PAMAM complexes. Yields were increased by increasing inter- and intramolecular attractive forces between the PSS chains in the capsules through electrostatic, hydrophobic, and a combination of these interactions. The yields, however, were practically unaffected by enhancing such effects between dendrimer molecules. Transmission electron microscopy and scanning force microscopy measurements show no deformation for 3.5 microm capsules stabilized through the various interactions stated above. Further, capsules were filled with low molecular weight dextran sulfate and subsequently loaded with a model, therapeutically active molecule, doxorubicin hydrochloride (DOX). Release of DOX from the capsules was also studied to highlight the drug delivery potential of the dendrimer-based microcapsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.