Abstract
This introductory account of commutative algebra is aimed at advanced undergraduates and first year graduate students. Assuming only basic abstract algebra, it provides a good foundation in commutative ring theory, from which the reader can proceed to more advanced works in commutative algebra and algebraic geometry. The style throughout is rigorous but concrete, with exercises and examples given within chapters, and hints provided for the more challenging problems used in the subsequent development. After reminders about basic material on commutative rings, ideals and modules are extensively discussed, with applications including to canonical forms for square matrices. The core of the book discusses the fundamental theory of commutative Noetherian rings. Affine algebras over fields, dimension theory and regular local rings are also treated, and for this second edition two further chapters, on regular sequences and Cohen–Macaulay rings, have been added. This book is ideal as a route into commutative algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.