Abstract
Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computers helping people with special needs : ... International Conference, ICCHP ... : proceedings. International Conference on Computers Helping People with Special Needs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.