Abstract
AimsLung cancer is one of the main causes of cancer-related deaths worldwide and radiotherapy is a major treatment of choice. However, radioresistance is a main reason for radiotherapy failure or tumor relapse. Here, we investigated possible mechanisms associated with cancer cell radioresistance. Materials and methodsWe compared two newly derived cell lines, namely A549-IR3 and A549-IR6, which survived repeated (3 or 6 times) 4 Gy exposure of parental A549 lung cancer cell line. DNA repair ability, stemness and senescence were comparatively studied. Key findingsA549-IR3 exhibited higher proliferation ability and radioresistance compared to parental and A549-IR6 cells. Enhanced radioresistance was not accompanied by chemoresistance to cisplatin or docetaxel. DNA repair kinetics (γΗ2ΑΧ expression) were similar in all cell lines. A549-IR3 cells exhibited a significant rise in stem cell markers (CD44, CD133, OCT4, SOX2 and NANOG) whereas A549-IR6 displayed an increased senescent population. SignificanceCancer cells surviving after radiotherapy may follow two different escape pathways: selection for radioresistance resulting in regrowth, and in clinical terms relapse, or above an irradiation threshold, stem-cells die and cancer cells become senescent, leading the tumor to a state of dormancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.