Abstract
Changes in the stem radius of young Norway spruce [Picea abies (L.) Karst.] were related to changes in stem water content in order to investigate the relationship between diurnal stem size fluctuations and internally stored water. Experiments were performed on living trees and on cut stem segments. The defoliated stem segments were dried under room conditions and weight (W), volume (V), and xylem water potential (Ψ s) were continuously monitored for 95 h. Additionally, photos of cross-sections of fresh and air-dried stem segments were taken. For stem segments we found that the change in V was linearly correlated to the change in W as long as Ψ s was >–2.3±0.3 MPa (phase transition point). Stem contraction occurred almost solely in the elastic tissues of the bark (cambium, phloem, and parenchyma), and the stem radius changes were closely coupled to bark water content. For living trees, it is therefore possible to estimate the daily contribution of "bark water" to transpiration from knowledge of the stem size and continuous measurements of the stem radius fluctuations. When Ψ s reaches the phase-transition point, water is also withdrawn from the inelastic tissue of the stem (xylem), which – in the experiment with stem segments – was indicated by an increasing ratio between Δ V and Δ W. We assume that for Ψ s below the transition point, air is sucked into the tracheids (cavitation) and water is also withdrawn from the xylem. Due to the fact that in living P. abies Ψ s rarely falls below –2.3±0.3 MPa and the xylem size is almost unaffected by radius fluctuations, dendrometers are useful instruments with which to derive the diurnal changes in the bark water contents of Norway spruce trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.