Abstract

Dolomite crystals in partially dolomitized limestone from the Platteville Formation are both compositionally and microstructurally heterogeneous. A single dolomite crystal usually contains three phases: the host Ca-rich dolomite [Ca 1.14 Mg 0.86 (CO 3 ) 2 ], an Fe-bearing dolomite [Ca 1.06 Mg 0.80 Fe 0.14 (CO 3 ) 2 ], and calcite inclusions. These three phases show similar orientations. The Ca-rich dolomite exhibits modulated microstructures with wavelength ranging from 7 to 30 nm. The modulated microstructures are not evident in Fe-bearing dolomite. Modulations in the Ca-rich dolomite have three predominant orientation ranges in the studied sample: from (205) to (104), from (001) to (1̅01), and ~(110), which are consistent with previous studies. Bright-field (BF) and high-angle annular dark-field (HAADF) images confirm that these modulations are due to chemical variation rather than strain or diffraction contrast. The Ca-rich lamellae are Mgrich calcite with compositions ranging from Ca 0.85 Mg 0.15 CO 3 to Ca 0.70 Mg 0.30 CO 3 . The observed results indicate that these Ca-rich exsolution lamellae formed during diagenesis. In this study, three kinds of “c”-reflections, which are weak spots in the halfway position between the principal reflections along the (104)*, (112)*, and (110)* directions, have been found in the diffraction patterns of some Ca-rich dolomite. Mg-Ca ordering in x-y planes was not observed directly in Z-contrast images. FFT patterns from the Z-contrast images do not show “c”-reflections. STEM images confirm that the “c”-reflections could result from multiple diffraction between the host dolomite and twinned Mg-calcite nano-lamellae under TEM imaging and diffraction modes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.