Abstract
We hypothesised that global structural changes in stem cells would manifest with differentiation, and that these changes would be observable with light scattering microscopy. Analysed with a fractal dimension formalism, we observed significant structural changes in differentiating human mesenchymal stem cells within one day after induction, earlier than could be detected by gene expression profiling. Moreover, light scattering microscopy is entirely non-perturbative, so the same sample could be monitored throughout the differentiation process. We explored one possible mechanism, chromatin remodelling, to account for the changes we observed. Correlating with the staining of HP1α, a heterochromatin protein, we applied novel microscopy methods and fractal analysis to monitor the plastic dynamics of chromatin within stem cell nuclei. We showed that the level of chromatin condensation changed during differentiation, and provide one possible explanation for the changes seen with the light scattering method. These results lend physical insight into stem cell differentiation while providing physics-based methods for non-invasive detection of the differentiation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.