Abstract

We propose a new method to detect gravitational waves, based on spatial coherence interferometry with stellar light, as opposed to the conventional temporal coherence interferometry with laser sources. The proposed method detects gravitational waves by using two coherent beams of light from a single distant star measured at separate space-based detectors with a long baseline. This method can be applied to either the amplitude or intensity interferometry. This experiment allows for the search of gravitational waves in the lower frequency range of 10-6 to 10-4 Hz. In this work, we present the detection sensitivity of the proposed stellar interferometer by taking the detector response and shot and acceleration noises into account. Furthermore, the proposed experimental setup is capable of searching for primordial black holes and studying the size of the target neutron star, which are also discussed in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.