Abstract

High-dimensional quantum system plays an important role in quantum information tasks. However, the interaction between quantum system and environment would give rise to decoherence. In this paper, we examine the quantum-memory-assisted entropic uncertainty relation under amplitude damping (AD) decoherence. It is found that entropic uncertainty first inflates and then reduces to a nonzero value with the growing decoherence strength. In addition, it is revealed that the mixedness is not closely associated with entropic uncertainty which is different from the previous result. Furthermore, we construct a remarkably effective filtering operator to steer and reduce the entropic uncertainty. Our exploration might offer fresh insights into the dynamics and manipulation of the entropic uncertainty in high-dimensional quantum system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.