Abstract

The prediction of the long-term behavior of reinforced concrete structures involved in the nuclear waste storage requires the assessment and the modeling of the corrosion processes of steel reinforcement. This paper deals with the modeling of the cathodic reaction that is one of the main mechanisms of steel rebar corrosion. This model takes into account oxygen reduction and oxygen diffusion through a diffusion barrier (iron oxide and/or carbonated concrete) as a function of water saturation degree. It is demonstrated that corrosion rate of reinforcement embedded in concrete with water saturation degree as low as 0.9 could be under oxygen diffusion control. Thus, transport properties of concrete (aqueous and gaseous phase, dissolved species) are key parameters that must be taken into account to model electrochemical processes on the reinforcement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.