Abstract

Douglas-fir sapwood and heartwood were impregnated with SO2 and steam exploded at three severity levels, and the cellulose-rich, water-insoluble component was enzymatically hydrolyzed. The high-severity conditions resulted in near complete solubilization and some degradation of hemicelluloses and a significant improvement in the efficiency of enzymatic digestibility of the cellulose component. At lower severity, some of the hemicellulose remained unhydrolyzed, and the cellulose present in the pretreated solids was not readily hydrolyzed. The medium-severity pretreatment conditions proved to be a good compromise because they improved the enzymatic hydrolyzability of the solids and resulted in the recovery of the majority of hemicellulose in a monomeric form within the water-soluble stream. Sapwood-derived wood chips exhibited a higher susceptibility to both pretreatment and hydrolysis and, on steam explosion, formed smaller particles as compared to heartwood-derived wood chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.