Abstract

Steam flooding is crucial for the development of heavy oil reservoirs, and the development of the steam cavity significantly determines the efficiency of steam flooding. Previous studies have elucidated the concept of steam overburden and pseudomobility ratio; however, the thermal energy loss in deep heavy oil reservoirs during steam injection needs further investigation. Therefore, in this study, the vapour–liquid interface theory and mathematical integration were used to establish a steam cavity expansion model. The wellbore heat loss rate coefficient, steam overlay, and pseudomobility ratio were used to accurately describe the development of the steam cavity in deep heavy oil reservoirs. The proposed model was experimentally validated, and it was observed that the model could accurately reflect the actual mine conditions. In addition, the pressure gradient distribution of the steam belt and the heat dissipation areas of the top and bottom layers of the steam cavity were evaluated. The results showed that the influence of the wellbore heat loss rate coefficient on the pressure gradient of the oil layer was primarily in the range of 5–20 m away from the steam injection well. Furthermore, it was observed that the pseudomobility ratio is inversely proportional to the development of the steam cavity. As the wellbore heat loss rate coefficient increased, the wellbore heat loss increased. The larger the area ratio, the more pronounced the steam overlay phenomenon, and the large area ratio does not meet the development requirements of the steam chamber. The research closely combines theory with production, and the results of this study can help actual mines by providing theoretical support for the development of deep heavy oil reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.