Abstract

According to the "state transitions" theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. The role of LHCII phosphorylation upon changes in light intensity is less thoroughly investigated, particularly when changes in light intensity are too fast to allow the phosphorylation/dephosphorylation processes to occur. Here, we demonstrate that the Arabidopsis (Arabidopsis thaliana) stn7 (for state transition7) mutant, devoid of the STN7 kinase and LHCII phosphorylation, shows a growth penalty only under fluctuating white light due to a low amount of PSI. Under constant growth light conditions, stn7 acquires chloroplast redox homeostasis by increasing the relative amount of PSI centers. Thus, in plant chloroplasts, the steady-state LHCII phosphorylation plays a major role in preserving PSI upon rapid fluctuations in white light intensity. Such protection of PSI results from LHCII phosphorylation-dependent equal distribution of excitation energy to both PSII and PSI from the shared LHCII antenna and occurs in cooperation with nonphotochemical quenching and the proton gradient regulation5-dependent control of electron flow, which are likewise strictly regulated by white light intensity. LHCII phosphorylation is concluded to function both as a stabilizer (in time scales of seconds to minutes) and a dynamic regulator (in time scales from tens of minutes to hours and days) of redox homeostasis in chloroplasts, subject to modifications by both environmental and metabolic cues. Exceeding the capacity of LHCII phosphorylation/dephosphorylation to balance the distribution of excitation energy between PSII and PSI results in readjustment of photosystem stoichiometry.

Highlights

  • According to the “state transitions” theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality

  • In order to investigate the mechanisms that enable the acclimation of Arabidopsis to rapidly changing light intensities, we set up an illumination device in which the intensity of white light fluctuates (FL): low light (60 mmol photons m22 s21) is interrupted every 5 min by a 1-min-long high-light (600 mmol photons m22 s21) peak

  • Under fluctuating light (FL), all mutant plants lacking the state transition7 (STN7) kinase grew significantly slower compared with the wild type or the stn8 and npq mutants (Fig. 1A; Supplemental Fig. S1)

Read more

Summary

Introduction

According to the “state transitions” theory, the light-harvesting complex II (LHCII) phosphorylation in plant chloroplasts is essential to adjust the relative absorption cross section of photosystem II (PSII) and PSI upon changes in light quality. It is worth noting that the different qualities of light generally used to induce reversible LHCII phosphorylation and state transitions (blue/red and far-red lights) have usually been of very low intensity (for review, see Haldrup et al, 2001), and apparently, minimal protonation of the lumen takes place under such illumination conditions. Another difference between induction of LHCII protein phosphorylation by different qualities of light or different quantities of white light concerns the concomitant induction of PSII core protein phosphorylation. In the former case, the level of PSII core protein phosphorylation follows the phosphorylation pattern of LHCII proteins, whereas under different quantities of white light, the phosphorylation behavior of PSII core and LHCII proteins is the opposite (Tikkanen et al, 2008b)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.