Abstract

The movement of the triple contact line plays a crucial role in many applications such as ink-jet printing, liquid coating and drainage (imbibition) in porous media. To design accurate computational tools for these applications, predictive models of the moving contact line are needed. However, the basic mechanisms responsible for movement of the triple contact line are not well understood but still debated. We investigate the movement of the contact line between water, vapour and a silica-like solid surface under steady conditions in low capillary number regime. We use molecular dynamics (MD) with an atomistic water model to simulate a nanoscopic drop between two moving plates. We include hydrogen bonding between the water molecules and the solid substrate, which leads to a sub-molecular slip length. We benchmark two continuum methods, the Cahn–Hilliard phase-field (PF) model and a volume-of-fluid (VOF) model, against MD results. We show that both continuum models reproduce the statistical measures obtained from MD reasonably well, with a trade-off in accuracy. We demonstrate the importance of the phase-field mobility parameter and the local slip length in accurately modelling the moving contact line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.