Abstract

We extend a recent theory for steady uniform gravity-driven flow of a highly concentrated granular-fluid mixture over an erodible bed between frictional sidewalls. We first include angles of inclination greater than the angle of repose of the particles; then, we introduce a boundary condition for flow over a rigid bumpy bed. We compare the predictions of the resulting theory with the volume flow rates, depths and angles of inclination measured in the experiments on dry and variously saturated flows over rigid and erodible boundaries. Finally, we employ the resulting theory, with the assumption that the flow is shallow, to solve, in an approximate way, for the variation of height and average velocities along a steady non-uniform inclined flow of a granular-fluid mixture that moves over a rigid bumpy bed. The solutions exhibit features of the flow seen in the experiments – for example, a dry bulbous snout in advance of the fluid, whose length increases with increasing number of the particles and that disappears with increasing velocity – for which satisfactory explanations were lacking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.