Abstract

General traffic analysis based on deep packet inspection (DPI) techniques at switches cannot grasp the detailed knowledge of network applications going into internal switches, and the statistics-based reports of switches lack flow-level recognition of the traffic. Besides, DPI is generally expensive and has limited performance. Therefore, network-wise accurate flow-awareness by packet sampling is highly desirable for fine-grained quality of service guarantee, internal network management, traffic engineering, security analysis, and so on. In this paper, we propose a Spatial-Temporal Collaborative Sampling (STCS) framework in the flow-aware software-defined networks (SDNs). Particularly, considering the spatial-temporal factors and limits of network resources, the formulated STCS problem aims to maximize the network-wise sampling accuracy of flows including mice flows and elephant flows by characterizing both of the comprehensive influences of switches and the effects on sampling accuracy imposed by the collaborative strategy among switches in the spatial-temporal dimension. We propose a suboptimal approach to address the complex STCS problem in two steps: 1) Top-K switch selection based on the iterative comprehensive influence, and 2) sampling time slot allocation based on the local value maximization. Trace-driven evaluation results demonstrate the effectiveness of the proposed framework on improving the sampling accuracy and reducing redundant packets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.