Abstract

The double-stranded RNA binding protein Staufen1 (Stau1) is involved in diverse gene expression pathways. For Stau1-mediated mRNA decay (SMD) in mammals, Stau1 binds to the 3' untranslated region of target mRNA and recruits Upf1 to elicit rapid mRNA degradation. However, the events downstream of Upf1 recruitment and the biological importance of SMD remain unclear. Here we show that SMD involves PNRC2, decapping activity, and 5'-to-3' exonucleolytic activity. In particular, Upf1 serves as an adaptor protein for the association of PNRC2 and Stau1. During adipogenesis, Stau1 and PNRC2 increase in abundance, Upf1 becomes hyperphosphorylated, and consequently SMD efficiency is enhanced. Intriguingly, downregulation of SMD components attenuates adipogenesis in a way that is rescued by downregulation of an antiadipogenic factor, Krüppel-like factor 2 (KLF2), the mRNA of which is identified as a substrate of SMD. Our data thus identify a biological role for SMD in adipogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.