Abstract
Quantum chaos plays a significant role in understanding several important questions of recent theoretical and experimental studies. Here, by focusing on the localization properties of eigenstates in phase space (by means of Husimi functions), we explore the characterizations of quantum chaos using the statistics of the localization measures, that is the inverse participation ratio and the Wehrl entropy. We consider the paradigmatic kicked top model, which shows a transition to chaos with increasing the kicking strength. We demonstrate that the distributions of the localization measures exhibit a drastic change as the system undergoes the crossover from integrability to chaos. We also show how to identify the signatures of quantum chaos from the central moments of the distributions of localization measures. Moreover, we find that the localization measures in the fully chaotic regime apparently universally exhibit the beta distribution, in agreement with previous studies in the billiard systems and the Dicke model. Our results contribute to a further understanding of quantum chaos and shed light on the usefulness of the statistics of phase space localization measures in diagnosing the presence of quantum chaos, as well as the localization properties of eigenstates in quantum chaotic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.