Abstract

Direct numerical simulation of mixing processes (Rayleigh-Taylor and Richtmyer-Meshkov instabilities) is computationally expensive due to the need to resolve turbulent structures on small scales. Hence, it is common practice in both academia and industry to use phenomenological models that explicitly model the mixing processes within a host hydrodynamic code. For such schemes to be self-consistent, the mixing should be dominated by the mass introduced by the dedicated mixing model, with minimal contribution from the numerical methods of the host code. In this report, several diagnostic statistics are described that allow for the assessment of the production of mix and a determination of the quality of a mixing model. These diagnostics are implemented within an existing two-dimensional finite element hydrocode, containing an implementation of Youngs' turbulent mix model, and used to assess the mixing scheme against a number of two-fluid test problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.