Abstract

The homopolymerization of a polar monomer, 4-methylthiostyrene (MTS), was successfully achieved by a rare-earth metal based catalyst in the highest activity of 45.1 × 104 g molY–1 h–1 and the excellent syndioselectivity (rrrr > 99%). The polymerization was rather controllable that the resultant poly(methylthiostyrene)s (PMTS) had molecular weights comparable to the theoretic ones reaching up to 1.7 × 105 while the molecular weight distributions were narrow (PDI = 1.3–1.9). Moreover, the copolymerization of this polar MTS with the nonpolar styrene (St) performed fluently under various MTS-to-St ratios in a quasi-living mode. The monomer reactivity ratios were rMTS = 1.08 and rSt = 0.77, following the first Markov statistics, and was close to the ideal random copolymerization. Therefore, a series of unprecedented statistical random copolymers, P(St-r-MTS)s, where the compositions were strictly closed to the monomer fed ratios, had been accessed. Strikingly, both monomer sequences remained highly syndiotacti...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.