Abstract

Fractional order PID (FOPID) controllers have recently found an increasing application in different fields of control. Comparing to traditional PID algorithms, FOPID controllers provide more flexibility and better performances. The simple and non-model-based structure of FOPID controllers has boosted their usage in real-world applications. However, due to having two more control parameters than regular PID controllers and the non-linear structure of FOPID controllers, the tuning procedure of these controllers is still a challenge. The authors of the present paper have recently proposed a Taguchi-based gain tuning algorithm for tuning of control parameters of FOPID controller. The present paper is an experimental evaluation of the proposed method. A custom made SEA, FUM-LSEA, is used as the test bed in this study. Deriving a dynamic model of the FUM-LSEA, feed-forward terms are added to the controller to compensate for disturbances from motions of the output block. Optimal gains and orders of the controller are obtained through a set of experiments suggested by the Taguchi method. The Taguchi optimized controller is also compared to a Ziegler–Nichols tuned controller. The experimental results indicate 45% improvements in force tracking error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.