Abstract

Despite recent breakthroughs in understanding how protein sequence relates to structure and function, considerably less attention has been paid to the general features of protein surfaces beyond those regions involved in binding and catalysis. This article provides a systematic survey of the universe of protein surfaces and quantifies the sizes, shapes, and curvatures of the positively/negatively charged and hydrophobic/hydrophilic surface patches as well as correlations between such patches. It then compares these statistics with the metrics characterizing nanoparticles functionalized with ligands terminated with positively and negatively charged ligands. These particles are of particular interest because they are also surface patchy and have been shown to exhibit both antibiotic and anticancer activities—via selective interactions against various cellular structures—prompting loose analogies to proteins. The analyses support such analogies in several respects (e.g., patterns of charged protrusions and hydrophobic niches similar to those observed in proteins), although there are also significant differences. Looking forward, this work provides a blueprint for the rational design of synthetic nano‐objects with further enhanced mimicry of proteins’ surface properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.