Abstract
We study the approximation of Ef(X-T) by a Monte Carlo algorithm, where X is the solution of a stochastic differential equation and f is a given function. We introduce a new variance reduction method, which can be viewed as a statistical analogue of Romberg extrapolation method. Namely, we use two Euler schemes with steps delta and delta(beta), 0 < beta < 1. This leads to an algorithm which, for a given level of the statistical error, has a complexity significantly lower than the complexity of the standard Monte Carlo method. We analyze the asymptotic error of this algorithm in the context of general (possibly degenerate) diffusions. In order to find the optimal beta (which turns out to be beta = 1/2), we establish a central limit: type theorem, based on a result of Jacod and Protter for the asymptotic distribution of the error in the Euler scheme. We test our method on various examples. In particular, we adapt it to Asian options. In this setting, we have a CLT and, as a by-product, an explicit expansion of the discretization error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.