Abstract
We present and validate a statistical method able to separate nonlinear interference noise (NLIN) into a residual Gaussian (ResN) and a phase noise (NLPN) component. We take into account the interaction of the NLIN with the receiver's DSP, mainly through carrier phase recovery (CPR), by considering the amount of correlation of the NLPN component. This allows obtaining in a straightforward way an accurate prediction of the achievable post-DSP transmission performance. We apply our method on simulated data in different scenarios. For this purpose: (i) several different quadrature amplitude modulation (QAM) and probabilistically shaped (PS) formats are investigated and (ii) simulations with standard single mode fiber (SSMF) and dispersion shifted fiber (DSF) are performed. In all these cases we validate the results provided by our method through comparison with ideal data-aided CPR and a more practical blind phase search (BPS) algorithm. The results obtained are finally compared with the predictions of existing theoretical models and the differences with our approach are pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.