Abstract

We present a quantitative, statistical analysis of random lambda terms in the De Bruijn notation. Following an analytic approach using multivariate generating functions, we investigate the distribution of various combinatorial parameters of random open and closed lambda terms, including the number of redexes, head abstractions, free variables or the De Bruijn index value profile. Moreover, we conduct an average-case complexity analysis of finding the leftmost-outermost redex in random lambda terms showing that it is on average constant. The main technical ingredient of our analysis is a novel method of dealing with combinatorial parameters inside certain infinite, algebraic systems of multivariate generating functions. Finally, we briefly discuss the random generation of lambda terms following a given skewed parameter distribution and provide empirical results regarding a series of more involved combinatorial parameters such as the number of open subterms and binding abstractions in closed lambda terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.