Abstract
We have studied the statistics of giant pulses from the Crab pulsar for the first time with particular reference to their widths. We have analyzed data collected during 3.5 hours of observations conducted with the Westerbork Synthesis Radio Telescope operated in a tied-array mode at a frequency of 1200 MHz. The PuMa pulsar backend provided voltage recording of X and Y linear polarization states in two conjugate 10 MHz bands. We restricted the time resolution to 4 microseconds to match the scattering on the interstellar inhomogeneities. In total about 18000 giant pulses (GP) were detected in full intensity with a threshold level of 6 sigma. Cumulative probability distributions (CPD) of giant pulse energies were analyzed for groups of GPs with different effective widths in the range 4 to 65 microseconds. The CPDs were found to manifest notable differences for the different GP width groups. The slope of a power-law fit to the high-energy portion of the CPDs evolves from -1.7 to -3.2 when going from the shortest to the longest GPs. There are breaks in the CPD power-law fits indicating flattening at low energies with indices varying from -1.0 to -1.9 for the short and long GPs respectively. The GPs with a stronger peak flux density were found to be of shorter duration. We compare our results with previously published data and discuss the importance of these peculiarities in the statistical properties of GPs for the heoretical understanding of the emission mechanism responsible for GP generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.