Abstract

This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating, detecting, and attributing climate changes. The estimation follows the spectral method by using empirical orthogonal functions, also called the method of reduced space optimal averaging. The detection follows the linear regression method, which can be found in most textbooks about multivariate statistical techniques. The detection algorithms are described by using the space-time approach to avoid the non-stationarity problem. The paper includes (1) the optimal averaging method for minimizing the uncertainties of the global change estimate, (2) the weighted least square detection of both single and multiple signals, (3) numerical examples, and (4) the limitations of the linear optimal averaging and detection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.