Abstract
Analytic and computational methods developed within statistical physics have found applications in numerous disciplines. In this Letter, we use such methods to solve a long-standing problem in statistical genetics. The problem, posed by Haldane and Waddington [Genetics 16, 357 (1931)], concerns so-called recombinant inbred lines (RILs) produced by repeated inbreeding. Haldane and Waddington derived the probabilities of RILs when considering two and three genes but the case of four or more genes has remained elusive. Our solution uses two probabilistic frameworks relatively unknown outside of physics: Glauber's formula and self-consistent equations of the Schwinger-Dyson type. Surprisingly, this combination of statistical formalisms unveils the exact probabilities of RILs for any number of genes. Extensions of the framework may have applications in population genetics and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.