Abstract

The massive increase in disposable plastic globally can be addressed through effective recovery methods, and one of these methods is pyrolysis. R software may be used to statistically model the composition and yield of pyrolysis products, such as oil, gas, and waxes to deduce an effective pyrolysis mechanism. To date, no research reports have been documented employing the Arrhenius equation in R software to statistically forecast the kinetic rate constants for the pyrolysis of high-density plastics. We used the Arrhenius equation in R software to assume two series of activation energies (Ea) and pre-exponential factors (Ao) to statistically predict the rate constants at different temperatures to explore their impact on the final pyrolysis products. In line with this, MATLAB (R2020a) was used to predict the pyrolysis products of plastic in the temperature range of 370–410 °C. The value of the rate constant increased with the temperature by expediting the pyrolysis reaction due to the reduced frequency factor. In both assumed series of Ea and Ao, a significantly larger quantity of oil (99%) was predicted; however, the number of byproducts increased in the first series analysis compared to the second series analysis. It was revealed that an appropriate combination of Ea, Ao, and the predicted rate constants could significantly enhance the efficiency of the pyrolysis process. The major oil recovery in the first assumed series occurred at 390 °C to 400 °C, whereas the second assumed series of Ea and Ao occurred at 380 °C to 390 °C. In the second series at 390 °C to 400 °C, the predicted kinetic rate constants behaved aggressively after 120 min of the pyrolysis process. The second assumed series and anticipated rate constants at 380 °C to 390 °C can be applied commercially to improve oil production while saving energy and heat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.