Abstract

Microreactors are efficient with regard to the continuous production of biodiesel, because of their enhanced mass transfer. In this study, a novel structure of microchannel reactor was studied to synthesize biodiesel from soybean oil via alkali-catalyzed transesterification. Response surface methodology (RSM) was applied to evaluate the relationship between biodiesel yield and reaction parameters, such as residence time, reaction temperature, catalyst amount, and molar ratio of methanol to oil. A three-level four-factor Box–Behnken design (BBD) was used to fit the available response data to a second-order polynomial regression model. Under the optimum conditions of a residence time of 14.9 s, a methanol/oil molar ratio of 8.5, 1.17 wt % KOH, and 59 °C, the biodiesel yield reached 99.5%. The effect of moisture and free fatty acid on biodiesel production were also explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.