Abstract

To study the performance of genotypes under different growing conditions, plant breeders evaluate their germplasm in multi-environment trials. These trials produce genotype × environment data. We present statistical models for the analysis of such data that differ in the extent to which additional genetic, physiological, and environmental information is incorporated into the model formulation. The simplest model in our exposition is the additive 2-way analysis of variance model, without genotype × environment interaction, and with parameters whose interpretation depends strongly on the set of included genotypes and environments. The most complicated model is a synthesis of a multiple quantitative trait locus (QTL) model and an eco-physiological model to describe a collection of genotypic response curves. Between those extremes, we discuss linear-bilinear models, whose parameters can only indirectly be related to genetic and physiological information, and factorial regression models that allow direct incorporation of explicit genetic, physiological, and environmental covariables on the levels of the genotypic and environmental factors. Factorial regression models are also very suitable for the modelling of QTL main effects and QTL × environment interaction. Our conclusion is that statistical and physiological models can be fruitfully combined for the study of genotype × environment interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.