Abstract

ABSTRACT To better understand the physical mechanism of undertow, field observations were conducted during barred and planar beach states on the Hasaki coast in Japan. The two observation periods spanned 21 days from May 13 to June 2 in 2016, and 13 days from May 9 to May 22 in 2017, respectively. A horizontal acoustic Doppler current profiler was used to measure the undertow velocity and water level. The observed data were statistically analyzed to investigate the characteristics of the spatial and wave-energetic distributions of the undertow exceedance probability, PE . The results reveal that when the wave energy flux level was high, the undertow velocity increased, as did its PE . By contrast, the undertow PE during a low-wave-energy level decreased with greater water depths. Here, a Weibull distribution was applied to explain PE of the undertow. The Weibull parameters: scale and shape were estimated by the combination of normalized values of the wave energy flux, relative surf zone locations, and normalized water depths, and this generalized equation was considered a statistical model for estimating undertow PE . A comparison of the statistical model against the measurement demonstrates that the model accurately predicted the undertow PE with a small error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.