Abstract

<p>The modeling of spatio-temporal trends in temperature extremes can help better understand the structure and frequency of heatwaves in a changing climate, as well as their environmental, societal, economic and global health-related risks. Here, we study annual temperature maxima over Southern Europe using a century-spanning dataset observed at 44 monitoring stations. Extending the spectral representation of max-stable processes, our modeling framework relies on a novel construction of max-infinitely divisible processes, which include covariates to capture spatio-temporal non-stationarities. Our new model keeps a popular max-stable process on the boundary of the parameter space, while flexibly capturing weakening extremal dependence at increasing quantile levels and asymptotic independence. It clearly outperforms natural alternative models. Results show that the spatial extent of heatwaves is smaller for more severe events at higher altitudes and that recent heatwaves are moderately wider. Our probabilistic assessment of the 2019 annual maxima confirms the severity of the 2019 heatwaves both spatially and at individual sites, especially when compared to climatic conditions prevailing in 1950-1975. Our applied results may be exploited in practice to understand the spatio-temporal dynamics, severity, and frequency of extreme heatwaves, and design suitable regional mitigation measures.</p>

Highlights

  • This work is distributed under the Creative Commons Attribution 4.0 License

  • We study annual temperature maxima over Southern Europe using a century-spanning dataset observed at 44 monitoring stations

  • Extending the spectral representation of max-stable processes, our modeling framework relies on a novel construction of max-infinitely divisible processes, which include covariates to capture spatio-temporal non-stationarities

Read more

Summary

Introduction

The modeling of spatio-temporal trends in temperature extremes can help better understand the structure and frequency of heatwaves in a changing climate, as well as their environmental, societal, economic and global health-related risks. Download date Item License Link to Item

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.