Abstract
The partition function for the square lattice completely filled with dimers is analyzed for a finite n × m rectangular lattice with edges and for the corresponding lattice with periodic boundary conditions. The total free energy is calculated asymptotically for fixed ξ = n/m up to terms o(1/n2−δ) for any δ > 0. The bulk terms proportional to nm, the surface terms proportional to (n + m) which vanish with periodic boundary conditions, and the constant terms which reveal a parity and shape dependence are expressed explicitly using dilogarithms and elliptic theta functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.