Abstract

The visual environment contains predictable information - “statistical regularities” - that can be used to aid perception and attentional allocation. Here we investigate the role of statistical learning in facilitating search tasks that resemble medical-image perception. Using faux X-ray images, we employed two tasks that mimicked two problems in medical-image perception: detecting a target signal that is poorly segmented from the background; and discriminating a candidate anomaly from benign signals. In the first, participants searched a heavily camouflaged target embedded in cloud-like noise. In the second, the noise opacity was reduced, but the target appeared among visually similar distractors. We tested the hypothesis that learning may be task-specific. To this end, we introduced statistical regularities by presenting the target disproportionately more frequently in one region of the space. This manipulation successfully induced incidental learning of the target’s location probability, producing faster search when the target appeared in the high-probability region. The learned attentional preference persisted through a testing phase in which the target’s location was random. Supporting the task-specificity hypothesis, when the task changed between training and testing, the learned priority did not transfer. Eye tracking showed fewer, but longer, fixations in the detection than in the discrimination task. The observation of task-specificity of statistical learning has implications for theories of spatial attention and sheds light on the design of effective training tasks.

Highlights

  • Human error is a major cause of accidents, contributing to > 90% of motor vehicle crashes (National Motor Vehicle Crash Causation Survey, 2008)

  • We examined location probability learning by making the target disproportionately likely to appear in one region

  • Because target-absent trials were uninformative of location probability learning, we examined data from target-present trials

Read more

Summary

Introduction

Human error is a major cause of accidents, contributing to > 90% of motor vehicle crashes (National Motor Vehicle Crash Causation Survey, 2008). Human error is surprisingly common in medical-image perception. False negatives in routine breast cancer screening are as high as 20–30% (Evans, Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Krupinski, 2015). These errors are attributed, in part, to a limit in visual attention. Conspicuous anomalies may be missed when radiologists’ attention is diverted to other aspects of the image (Wolfe, 2016). What mechanisms can be used to reduce the impact of attentional limitation?

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.