Abstract

This paper presents a Bayesian calibration method for a simulation-based model with stochastic functional input and output. The originality of the method lies in an adaptation involving the representation of the likelihood function by a Gaussian process surrogate model, to cope with the high computational cost of the simulation, while avoiding the surrogate modeling of the functional output. The adaptation focuses on taking into account the uncertainty introduced by the use of a surrogate model when estimating the parameters posterior probability distribution by MCMC. To this end, trajectories of the random surrogate model of the likelihood function are drawn and injected in the MCMC algorithm. An application on a train suspension monitoring case is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.