Abstract

AbstractA computer simulator for atmospheric concentrations of chemical species, or chemical transport model, is used to simulate global ozone concentrations. Two different wind forcings are considered: one is a combination of a numerical weather prediction model and observational data, the other is obtained as output from a climate model. The goal is to study the impact of meteorological variability on ozone. The statistical approach that we consider consists on learning the spatial structure of ozone concentrations by using process convolutions. We use several Bayesian model comparison methods to determine if the two simulations can be considered as realizations of the same random field. The methods provide a quantification of the differences for each of the computer model grid cells. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.