Abstract

We present rigorous estimates for some physical quantities related to turbulent and non-turbulent channel flows driven by a uniform pressure gradient. Such results are based on the concept of stationary statistical solutions, which is related to the notion of ensemble averages for flows in statistical equilibrium. We provide a lower bound estimate for the mean skin friction coefficient and improve on a previous upper bound estimate for the same quantity; both estimates are derived in terms of the Reynolds number. We also present lower and upper bound estimates for the mean rate of energy dissipation, the mean longitudinal bulk velocity (in the direction of the pressure gradient), and the mean kinetic energy in terms of various physical parameters. In particular, we obtain an upper bound related to the energy dissipation law, namely that the mean rate of energy dissipation is essentially bounded by a non-dimensional universal constant times the cube of the mean longitudinal bulk velocity over a characteristic macro-scale length. Finally, we investigate the scale-by-scale energy injection due to the pressure gradient, proving an upper bound estimate for the decrease of this energy injection as the scale length decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.