Abstract
Increasingly, multiple outcomes are collected in order to characterize treatment effectiveness or to evaluate risk factors. These outcomes tend to be correlated because they are measuring related quantities in the same individuals. While the analysis of outcomes measured in the same scale (commensurate outcomes) can be undertaken with standard statistical methods, outcomes measured in different scales (non-commensurate outcomes), such as mixed binary and continuous outcomes, present more difficult challenges.In this paper we contrast some statistical approaches to analyze non-commensurate multiple outcomes. We discuss the advantages of a multivariate method for the analysis of non-commensurate outcomes including situations of missing data. A real data example from a clinical trial, comparing different treatments for depression in low-income women, is used to illustrate the differences between the statistical approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.