Abstract

In the study, a local approach to setting reference tolerance values for the distance-to-agreement (DTA) component of the gamma index is proposed. The reference tolerance values are calculated in simulations, following a dose delivery model presented in a previous work. An analytical model for determining the quantiles of DTA distribution is also proposed and verified. It is shown that the distributions of DTA values normalized with either quantiles or standard deviation of DTA distributions are universal over analyzed plans and points within a single plan. This enables statistically sound inference about the quality of dose delivery. In particular, based on the normalized distributions the comparison of planned and delivered doses can be formulated within the framework of statistical inference as a problem of multiple statistical testing. For every evaluated point P of a plan, one may formulate and test a null hypothesis that there is no delivery error against an alternative hypothesis that there is a delivery error in P. It is also shown that the proposed approach is more sensitive than the current standard approach to shift errors in high dose gradient regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.