Abstract
Abstract. We analyze time series of Strombolian volcanic tremor, focusing our attention on the frequency band [0.1–0.5] Hz (very long period (VLP) tremor). Although this frequency band is largely affected by noise, we evidence two significant components by using Independent Component Analysis with the frequencies, respectively, of ~0.2 and ~0.4 Hz. We show that these components display wavefield features similar to those of the high frequency Strombolian signals (>0.5 Hz). In fact, they are radially polarised and located within the crater area. This characterization is lost when an enhancement of energy appears. In this case, the presence of microseismic noise becomes relevant. Investigating the entire large data set available, we determine how microseismic noise influences the signals. We ascribe the microseismic noise source to Scirocco wind. Moreover, our analysis allows one to evidence that the Strombolian conduit vibrates like the asymmetric cavity associated with musical instruments generating self-sustained tones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.