Abstract

Single-order diffraction gratings with quasi-random structures are effective optical elements in suppressing harmonics contamination. However, background intensity fluctuations introduced by quasi-random structures may affect the measurement of the spectra and the fluctuations lack quantitative description. A unified theoretical method is provided to describe quasi-random diffraction structures with arbitrary distribution functions and an arbitrary number of microstructures. The effect of the number of microstructures and distribution functions on the level of background fluctuations is evaluated. This work provides important guidance for the design and optimization of single-order diffraction gratings, which are attractive for spectral analysis and monochromator applications in synchrotron beam lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.