Abstract

This paper considers the maximum likelihood estimation of factor models of high dimension, where the number of variables (N) is comparable with or even greater than the number of observations (T). An inferential theory is developed. We establish not only consistency but also the rate of convergence and the limiting distributions. Five different sets of identification conditions are considered. We show that the distributions of the MLE estimators depend on the identification restrictions. Unlike the principal components approach, the maximum likelihood estimator explicitly allows heteroskedasticities, which are jointly estimated with other parameters. Efficiency of MLE relative to the principal components method is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.